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Stephen T. Barnard
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Abstract

An improved stochastic sterec-matching algorithm is presented. It in-
corporates two substantial modifications to an earlier version: a new vari-
ation of simulated annealing that is faster, simpler, and more controllable
than the conventional “heat-bath” version, and 2 hierarchical, coarse-to-
fine-resolution control structure. The Hamiltonian used in the original
model is minimized, but far more efficiently. The basis of microcanonical
annealing is the Creutz algorithm . Unlike its counterpart, the familiar
Metropolis algorithm, the Creutz algorithm simulates a thermally isolated
system at equilibrium. The hierarchical control structure, together with
a Brownian state-transition function, tracks ground states across scale,
beginning with small, coarsely coded levels. Results are shown for a 512
x 512 pair with 50 pixels of disparity.

Support for this work was provided by the Defense Advanced Research Projects Agency under
contracts DCA 76-85-C-0004 and MDA903-86-C-0084.



1 Introduction

Computational theories of vision often involve optimization, usually in an enor-
mous state space and over a nonconvex objective function. Recently, a subtle
technique from statistical physics has been used for such computations [1,2,3,4].
It is based on the physical analogy of annealing a system of molecules to its
ground state, and hence is called simulated annealing [5,6]. To grow a perfect
crystal, one starts at a high temperature and then gradually cools the substance,
staying as close to equilibrium as is practical. This is directly analogous to what
happens in simulated annealing: the Metropolis algorithm [7] is used to bring a
synthetic system to equilibrium, and the macroscopic parameter “temperature”
is used to control the rate of ¢cooling.
The general theme is as follows:

o A particular (usually low-level) vision problem is considered.

e A representation is chosen in which the problem is modeled as an analog
to a physical system of discrete “molecules.” Each molecule typically
corresponds to a location on a pixel lattice. The system has many degrees
of freedom.

s An energy function (a2 Hamiltonian) is chosen that expresses constraints
inherent in the problem. The solution is characterized by the ground
states of the system; that is, those states that have the lowest energy. The
ground states are difficult to specify because the state space of the system
is huge — exponential in the number of molecules.

e The dynamics are simulated in a way that brings the system to the desired
ground state, or at least to a very-low-energy state that approximates a
ground state.

This paper presents such a model for matching stereo images. An early
version is described in [3|. Two major extensions have been made that permit
substantially improved performance: First, a new variety of simulated annealing
is employed. It uses an simpler alternative to the standard Metropolis algorithm
that is inore efficient, more easily implemented, and offers more control over the
annealing process. Secondly, by representing the stereo pair as a Laplacian
pyramid, the system is extended to operate over several levels of resolution.
It exploits relatively quickly computed minima at lower levels of resolution to
initialize its state at higher levels. This method leads both to more efficiency
and to the ability to deal with much larger ranges of disparities.

The basic representation rernains unchanged. The state of the system en-
codes a dense map of discrete horizontal disparities, defined over the left image,
which specify corresponding points in the right image. In the improved design,
this state is relative to a particular level of resolution.



The energy of a lattice site is composed of two terms, each of which expresses
a constraint important in stereo matching:

Eij = |It{d,5) — Ir(i, 5+ D{E, 7)) + 2|V D, 7)

+

Ir, and Ig are the left and right image intensities, or some simple function of
them (such as a Laplacian). Subscripts + and 7 range over all sites in the left
image lattice. I} is the disparity map. The first term is the absolute difference
in intensity between corresponding points (where the correspondences are de-
fined by the current state of the system), and the second is proportional to the
local spatial variation in the current state (the magnitude of the gradient of the
disparity map). The constant A is used to balance the terms.! This equation
expresses two competing constraints: first, the image intensities of correspond-
ing points should be more-or-less equal, and second, the disparity map should
be more-or-less continuous.
The Hamiltonian,

E= Z Eij
is unchanged; therefore, the ground states that we seek to determine or to
approximate are the same. The new design is strictly concerned with improved
performance. The techniques used to obtain it are not restricted to stereo

matching, and should be considered for any simulated-annealing approach to
low-level vision problems.

2 Microcanonical Annealing

The conventional simulated annealing algorithm uses an adaptation of the Met-
ropolis algorithm to bring a system to equilibrium at decreasing temperatures.
The Metropolis algorithm defines a Markov process that generates a sequence
of states, such that the probability of occurrence of any particular state is pro-
portional to its Boltzman weight,

P(5) o< exp(-fE(S)) ,

where E{S) is the energy of state § and f is the inverse temperature of the
system. This process generates samples from the canenical ensemble; that is,
the system is considered to be immersed in a heat bath with a controllable
temperature. Annealing is accomplished by imposing a schedule for reducing
the temperature, 1/f, so as to keep the system close to equilibrium.

Creutz has described an alternative technique that simulates the microcanon-
tcal ensemble [8]. In this method, the total energy remains constant (for some
fixed point in the schedule). Instead of simulating a system immersed in a heat

1The performance of the system is not very sensitive to the value chosen for A. In the
example of Section 4, as well as all three examples in (3], A = 5 was used.



bath, the Creutz algorithm simulates a thermally isolated system in which en-
ergy is conserved. It performs a random walk through state space, constraining
states to a surface of constant energy. The simplest way to accomplish this is
to augment the representation with an additional degree of freedom, called a
demon, that carries a variable amount of energy, Ep. The total energy of the
system is now: :
E=ES)+Ep.
Normally, the demon is constrained to have nonnegative energy, although the
possibility of giving it negative energy is useful in annealing, as will be discussed
below.

In the Metropolis algorithm a potential new state $' is chosen randomly,
and is accepted or rejected based on the change in energy:

AE = E(§') - E(S) .

If AF is negative, the new state is accepted; otherwise, it is accepted with
probability exp(—fAE).

The Creutz algorithm is quite similar. If AFE is negative, the new state
is accepted, and the demon energy is increased {(Ep «— Ep — AE). If AE is
nonnegative, however, acceptance of the new state is contingent upon Ep: if
AFE < Ep the change is accepted, and the demon energy is decreased (Ep —
Ep — AE); otherwise, the new state is rejected. Clearly, the total energy of the
system remains constant.

The Creutz algorithm has several advantages. Unlike the Metropolis algo-
rithm, it does not require the evaluation of transcendental functions. Of course,
in practice these functions can be stored as tables, but we would like our algo-
rithm to be adaptable to fine-grained parallel processors such as the Connection
Machine. The small amount of local memory in such machines makes lookup
tables unattractive. The Creutz algorithm can easily be implemented with
only integer arithmetic — again, a significant advantage for fine-grained par-
allel processors and for VLSI implementation. Experiments indicate that the
Creutz method can be programmed to run an order of magnitude faster than
the conventional Metropolis method for discrete systems {9]. A further impor-
tant advantage is that microcanonical simulation does not require high-quality
random numbers.

In conventional simulated annealing, we control the process by specifying
the temperature. In the microcanonical version, however, temperature is not
a control parameter; it is a statistical feature of the system. In fact, standard
arguments can be used to show that at equilibrium the demon energies have a
Boltzman distribution:

P(Ep) o< exp(—BEp) .
The inverse temperature can be determined from the mean value of the demon
energy:

_ In(1+4/ < Ep>)

g 4



Control of microcanonical annealing is accomplished by periodically remov-
ing energy from the system. The method used to generate the results in Section
4 15 as follows:

1. Assume that the process begins in a random state Sy of high energy with
respect to the ground state. Call this Ey = E(Sp). The initial demon
energy is zero.

2. Remove a fixed proportion of this energy, §F, by reducing the demon
energy (Ep — Ep — 8E). The results of Section 4 were obtained with
§E = Ey/300.

3. Run the Creutz algorithm until the system reaches equilibrium. A rea-
sonable test for equilibrium is to consider the rate of accepted moves to
states of higher energy. If the system is large enough, this rate will in-
crease steadily until it approximates the rate of moves to states of lower
energy. We terminate the process for a particular energy level when the
rate of accepted moves to higher energy states decreases (measured over
N site visits).

4. Repeat steps (2] and [3) until no further improvement is observed.

This procedure has only one free parameter: the ratio §E/Ep. While Ep < 0,
the Creutz method operates as a “greedy” algorithm, accepting only moves to
lower energy states and increasing Ep. When Ep becomes positive (which
happens quickly if § F is small), the demon begins to exchange energy between
lattice positions. As the ground state is approached, Ep remains negative be-
cause it cannot absorb more energy from the lattice.

If sites are visited in a regular scan, we observe an undesirable effect: after
Ep is made negative, energy is removed from only a small area of the lattice.
For example, if we visit the sites along scan lines from left-to-right, bottom-to-
top, the algorithm will make “greedy” moves on the lower part of the lattice,
resulting in significantly lower energy density in this area compared to the rest
of the lattice. Many more scans may be required for this energy gradient to
diffuse thoughout the entire lattice. This problem is easily overcome by visiting
sites in random order.

The algorithm described above is sequential, and therefore is not suitable
for parallel processing. Fach local state transition can change Ep, which in
turn can affect the next transition. Fortunately, the technique can be modified
to a paralle] one by using a separate demon for each lattice site. {As we add
demons, the technique moves toward a canonical-ensemble simulation. In fact,
if the number of demons is very large compared to the number of sites, the
technique specializes to the Metropolis algorithm {8].) Preliminary experiments
with one demon per site indicate good performance, although the results of
Section 4 were generated with the single-demon algorithm.



3 Hierarchical Annealing

In the original model [3], annealing was performed only at the level of resolution
of the stereo images. In some cases, the images were first bandpass-filtered to
remove low-frequency components — in effect, a simple photometric correction
for inconsistent sensor gains or film development. Lower and upper bounds on
disparity were specified in advance, and all state transitions were considered with
equal probability. As the range of disparity became large, this scheme required
much larger amounts of computation. If we have m permissible disparities and
N pixels, the size of the state space is m?. If we double the range of disparity,
the size of the state space increases by a factor of 2%¥. Since N is a rather large
number (2!8 in the example shown in Section 4), we see that the state space
grows explosively with increasing disparity range.

A natural extension of the method is to adopt a hierarchical, coarse-to-fine
control structure. At a coarse level of resolution, the number of lattice sites
(i.e., the number of pixels) and the range of disparity are small; therefore the
size of the state space is relatively small.? We should be able to compute an
approximate ground state quickly, and then use it to initialize the annealing
process at the next, finer level of resolution.

Coarse-to-fine techniques have been widely used for image matching. For
example, Moravec [10] used a resolution hierarchy to match discrete, point-like
features. The stereo model described by Marr and Poggio [11] and further devel-
oped by Grimson [12] matched zero-crossings between hierarchies of bandpassed
images. More recently, Witkin et al. [13] have used a continuation method to
minimize an energy function through scale space. In each case, the results of
low-resolution matching were used to guide the system at higher resolutions.

The Laplacian pyramid, originally developed as a compact image-coding
technique [14|, offers an efficient representation for hierarchical annealing. In a
Laplacian pyramid, an image is transformed into a sequence of bandpass-filtered
copies, I°, I', I?, ..., I", each of which is smaller than its predecessor by a factor
of 1/2 in linear dimension (a factor of 1/4 in area), with the center frequency
of the passband reduced by one octave, This transform can be computed effi-
ciently by recursively applying a small generating kernel to create a Gaussian
{low-passed) pyramid, and then differencing successive low-passed images to
construct the Laplacian pyramid.

After constructing Laplacian pyramids from the original stereo images, dis-
parity is reduced by a factor of 1/2 in successive levels. Therefore, at some
level, disparity is small everywhere. For typical stereo images, we can take this
to be level n — 4. [For example, if the original images were a power of 2 in
linear dimension, the Laplacian images at level n — 4 would be 16 x 16 pixels.
Disparities in the range of 0 to 63 pixels in a pair of 512 x 512 images would be
reduced to the range of 0 to 1 pixel, with truncation, at the (n —4)th level.] We

2Although the state space may be large in absolute terms.



shall start annealing at this level, ind an approximate ground state, and then
expand the solution to the next level. To make this coarse-to-fine strategy work,
however, we need two further modifications. We must use a different process for
generating state transitions, and we must specify how a low-resolution result is
used to start the annealing process at the next-higher level.

In the original model, the probability of choosing a new disparity for con-
sideration as a new state was uniformly distributed over the prior range of
disparities: .

P(d; — dy) = ™
This is not compatible with our intention of guiding the process with lower-
tesolution results, however. Because we are now assuming the disparity of a
lattice site to be close to its correct value, a more effective generating process
is to restrict the disparities to increase or decrease by one pixel:

Pldj — dy) = { 0 otlllejnvise |
with the further restriction that the disparities are not allowed to specify cor-
responding points outside the boundary of the right image. In this scheme, the
system undergoes Brownian motion through state space. An additional feature
of this state-transition function is that it is no longer necessary to specify bounds
on disparity in advance. '

Expanding a low-resolution result to the next level is slightly more com-
plicated. Obviously, one should begin by simply doubling the size of the low-
resolution lattice and doubling the disparity values. Having done this, however,
we find that the new state has an artificially low energy because every odd dis-
parity value is “unoccupied,” and the new map is therefore more uniform than
it should be. A spuricus symmetry is imposed on the new state that is solely
due to the quantization of the previous result, which is likely to place the sys-
tem near a metastable state {a local minimum) from which it cannot recover.
Fortunately, there is an easy solution to this problem: Destroy this symmetry
by adding heat. One effective way is as follows:

1. Compute the energy E& of the initial state at level k. (This state has been
determined by doubling the result at level k£ + 1.)

2. Add a fixed proportion of this energy, AE*, by increasing the demon
temperature (Ep +— Ep + AE®). The results of Section 4 were obtained
with AE* = E%/10.

3. Run the Creutz algorithm until the system reaches equilibrium.

4. Repeat steps (2) and (3) until the number of accepted higher-energy states
exceeds the number of rejected higher-energy states.



4 Results

Figures 1(a) and (b) are an aerial stereo pair (512 x 512 pixels each) covering
part of Martin Marietta's test site for the Autonomous Land Vehicle Project
near Denver. The terrain is dominated by a long, steep “hogback” (running
diagonally across the middle of the images), that separates two broad valleys.
The highest terrain is in the upper left. Several roads and a few buildings may
be seen. Disparity ranges from zero to 50 pixels. Figures 1(c) and (d) show the
Laplacian pyramids.

The results of applying the microcanonical, hierarchical annealing algorithm
to these data are illustrated in Figure 2(a), which shows the sequence of ap-
proximate ground states found at each level of the pyramid. Disparity values
are displayed in 15 pseudocolors with wraparound. At the coarsest level of res-
olution (the tiny 16 x 16 images), the system converged to a uniform disparity
map. As the system descends through the resolution hierarchy, the detail of
the approximate ground states becomes increasingly precise. The disparities
along the right border of the map are incorrect because the left image does not
overlap the right in this region, and pixels in this region therefore have no cor-
responding points. Figure 2(b) is a contour map covering the upper left portion
of the stereo pair, prepared by the Engineering Topographic Laboratory, and is
included for comparison.

Figures 3 and 4 show some of the results in more detail. In Figure 3(a) a
few points and columns have been selected from a magnified portion of the left
image. The corresponding points in the right image are shown in Figure 3(b).
Figure 4 is similar.

The largest problem solved by the previous version of the system was on
the order of a 256 x 256 pair with 15 levels of disparity. Solving this problem
required about 12 hours on a Symbolics 3600. The result shown lhere is a 512
x 512 pair with 50 levels of disparity, and was computed in about the same
amount of time. Consider the size of the state space of the two problems. The
state space of the current problem® exceeds the size of the old problem by a
factor of more than 1036000,

3Considering the range of disparity to be fixed at 50 pixels.



{a) Left image. (b) Right image.

{¢] Left Laplacian pyramid. {d) Right Laplacian pyramid.

Figure 1: Aerial stereogram of the ALV test site.



{a) Pyramid of approximate ground states.

At \h\\‘ -

(b) Contour plot covering upper left portion.

Figure 2: Approximate ground states.

10



il.

deta

Left image

)

a

(

il.

deta

ight image

ing ri

Correspondi

)

b

(

Detail A.

.

3

igure

F

11



il.

deta

1mage

(2) Left

il

deta

ight image

ing ri

Correspondi

)

b

(

i B.

Deta

4

igure

F

i2



5 Conclusions

Two major improvements to a stochastic stereo-matching system have been de-
scribed: first,a simulation of the microcanonical ensemble, as opposed to the
canonical ensemble of conventional simulated annealing; and second, the exten-
sion to a hierarchical control structure based on Laplacian pyramids. Both
techniques are rather general in nature and can probably be used in other
simulated-annealing applications. Together, they permit solutions of stereo-
matching problems that are far beyond the competence of the original system.
We are currently evaluating the quantitative increase in performance at-
tributable to each new technique. Qualitatively, the use of microcanonical an-
nealing yields perhaps an order of magnitude increase in efficiency. A potentially
more important benefit is that its computation is simpler than the computation
of standard annealing, and is therefore more readily implemented in fine-grained
parallel systems. The hierarchical control structure, combined with the Brown-
ian state-transition function, contributes most of the increased performance.
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